## Notizen

## Kristallstruktur von (1,2:5,6-η-1,5-Cyclooctadien)(1 – 3-η-1,4cyclooctadienyl)rhodium(I)

Joachim Pickardt\* und Hans-Otto Stühler

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12

Eingegangen am 31. Oktober 1979

## Crystal Structure of (1,2:5,6-η-1,5-Cyclooctadiene)(1-3-η-1,4-cyclooctadienyl)rhodium(I)

The crystal structure of the title compound 1 was determined from single crystal X-ray data and refined to an R-value of 0.047. The rhodium atom forms one tetrahapto and one trihapto bond with its ligands and exhibits a 16 electron configuration.

 $[(COD)RhCl]_2$  (COD = 1,5-Cyclooctadien) reagiert mit offenkettigen oder cyclischen Dienen in Gegenwart von Isopropyl-Grignard-Verbindungen unter Bildung von  $\pi$ -Komplexen der Art [(COD)Rh(Allyl)] bzw. [(COD)Rh(Cycloenyl)], die diamagnetische 16-Valenzelektronensysteme darstellen<sup>1,2)</sup>. Dagegen entstehen mit 1,3,5-Cyclooctatrien oder Cyclooctatetraen die 18-Elektronensysteme (Cyclooctadien)(cyclooctadienyl)rhodium(I) (1)<sup>2)</sup> bzw. (Cyclooctadien)(cyclooctatrienyl)rhodium(I) (2)<sup>3)</sup>.

Wir zeigten im Falle von 2 mittels <sup>13</sup>C-NMR-Spektroskopie, daß der Cyclooctatrienylring bei Raumtemperatur eine Bewegung ausführt, die sich durch die Grenzsituationen 2a und 2b charakterisieren läßt, wodurch am Rh-Atom jeweils eine 18-Elektronenkonfiguration ausgebildet wird. Bei tiefer Temperatur ist der C<sub>8</sub>H<sub>9</sub>-Ligand hingegen nur noch über das zentrale Allylsystem an das Rhodium gebunden (2c); es liegt also am Zentralmetall eine 16-Elektronen-Valenzschale vor<sup>3</sup>).



Dagegen war bei 1 wegen der schlechten Löslichkeit keine zweifelsfreie Klärung möglich, ob bei tiefer Temperatur eine 16-Elektronenkonfiguration vorliegt. Wir haben die Befunde dahingehend gedeutet, daß der  $C_8H_{11}$ -Ligand eine Bewegung ausführt, deren Grenzsituationen durch die Formeln 1a und 1b wiedergegeben werden können. Bei tiefer Temperatur sollte eine dieser Formen eingefroren sein; es läge dann ein reines 16-Elektronensystem am Rhodium vor<sup>2</sup>).

Im Kristall sollte diese Bewegung des Liganden erschwert sein. Daher haben wir von 1 eine Röntgenstrukturanalyse durchgeführt.

Chem. Ber. 113, 1623-1625 (1980)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980

0009 - 2940/80/0404 - 1623 \$ 02.50/0

1 kristallisiert monoklin, Raumgruppe  $P2_1$ , mit 2 Molekülen in der Elementarzelle mit den Gitterparametern a = 1066.9(7), b = 728.4(2), c = 932.6(6) pm und  $\beta = 109.95(4)^{\circ}$ ;  $\rho_{exp.} = 1.50$  g/cm<sup>3</sup>,  $\rho_{ber.} = 1.54$  g/cm<sup>3</sup>.

Für die Intensitätsmessung wurde ein Kristall der ungefähren Abmessungen  $0.3 \times 0.4 \times 0.45$  mm unter Argon in eine Kapillare eingeschmolzen. Die Messung erfolgte mit einem automatischen Einkristalldiffraktometer Syntex P2<sub>1</sub>, unter Verwendung von monochromatischer Mo- $K_{\alpha}$ -Strahlung (Graphitmonochromator). Es wurden 2083 Reflexe mit  $2\Theta \leq 50^{\circ}$  gemessen, von denen 1079 unabhängige Reflexe mit Intensitäten  $I \geq 2\sigma$  (I) für die Strukturbestimmung verwendet wurden. Die Daten wurden in üblicher Weise korrigiert, es wurde eine empirische Absorptionskorrektur durchgeführt (Syntex XTL-Programm TAPER;  $\mu = 11.0 \text{ cm}^{-1}$ ). Die Rhodiumposition wurde mit Hilfe einer Patterson-Synthese ermittelt, die Kohlenstoffatome wurden aus Fourier- und Differenz-Fourier-Synthesen erhalten. Die anisotrope Verfeinerung des Rh-Atoms und der C-Atome ergab einen *R*-Wert von 0.058. Die Lagen der Wasserstoffatome wurden unter Annahme tetraedrischer bzw. trigonal-planarer Koordination und C – H-Bindungsabständen von 108 pm berechnet und die Atome mit festen Temperaturfaktoren von  $U = 0.08 \cdot 10^4$  pm<sup>2</sup> dem Strukturmodell hinzugefügt. Der endgültige *R*-Wert betrug 0.047. Die Rechnungen wurden mit den Programmen des Syntex XTL-Strukturpakets und mit dem Programm SHELX-76 ausgeführt.

Tab. 1. Atomparameter und Koffizienten der anisotropen Temperaturfaktoren (pm<sup>2</sup>)<sup>a,b)</sup>

| Atom  | ×           | У          | z          | U <sub>11</sub> | <sup>U</sup> 22 | U <sub>33</sub> | U <sub>12</sub> | <sup>บ</sup> 13 | U <sub>23</sub> |
|-------|-------------|------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Rh    | 0.7497(3)   | 0.7500     | 0.0000(3)  | 751(3)          | 428(3)          | 524(4)          | 16(8)           | 351(4)          | 34(9)           |
| C(1)  | 0.8299(14)  | 0.7806(22) | 0.8178(14) | 852(34)         | 811(36)         | 506(31)         | -168(35)        | 363(30)         | 3(34)           |
| C(2)  | 0.8752(12)  | 0.6016(17) | 0.8877(13) | 538(32)         | 506(33)         | 433(31)         | 289(31)         | 195(29)         | 69(31)          |
| C(3)  | 0.8128(15)  | 0.4319(21) | 0.8415(16) | 833(34)         | 704(35)         | 689(34)         | 213(34)         | 436(31)         | 77(34)          |
| C(4)  | 0,7293(14)  | 0.3767(20) | 0.6960(17) | 657(34)         | 585(35)         | 852(35)         | 49(34)          | 322(32)         | -94(34)         |
| C(5)  | 0.6847(14)  | 0.5076(20) | 0.5658(15) | 680(34)         | 609(34)         | 564(33)         | 38(34)          | 267(31)         | -80(33)         |
| C(6)  | 0.5607(15)  | 0.6145(21) | 0.5639(15) | 723(35)         | 777(35)         | 502(33)         | 67(35)          | 102(33)         | -47(34)         |
| .C(7) | 0.5726(15)  | 0.7084(20) | 0.7062(17) | 695(35)         | 679(36)         | 839(35)         | 211(34)         | 68(34)          | 32(34)          |
| C(8)  | 0.6850(16)  | 0.8420(20) | 0.7719(15) | 1029(36)        | 740(35)         | 410(32)         | 74(35)          | 117(33)         | 121(33)         |
| C(9)  | 0.9112(11)  | 0.7200(13) | 0.2483(12) | 455(31)         | 455(35)         | 425(30)         | -46(31)         | 145(28)         | 27(31)          |
| C(10) | 0.8123(12)  | 0.5823(19) | 0.2126(14) | 864(35)         | 898(36)         | 407(32)         | -132(35)        | 262(32)         | 36(33)          |
| C(11) | 0.7005(12)  | 0.5622(19) | 0.2705(16) | 854(35)         | 933(36)         | 627(35)         | -234(35)        | 65(34)          | 137(35)         |
| C(12) | 0.6123(13)  | 0.7358(19) | 0.2355(15) | 742(33)         | 1010(36)        | 910(34)         | -44(36)         | 468(31)         | ~149(36)        |
| C(13) | 0,6231(14)  | 0.8453(16) | 0.1074(14) | 743(34)         | 642(34)         | 636(33)         | -76(33)         | 346(31)         | -287(32)        |
| C(14) | 0.7084(14)  | 0.9992(19) | 0.1182(15) | 898(35)         | 848(36)         | 721(34)         | 165(35)         | 338(33)         | 103(35)         |
| C(15) | 0.8173 (14) | 1.0460(19) | 0.2611(16) | 937(36)         | 772(36)         | 811(35)         | -150(35)        | 124(35)         | -38(35)         |
| C(16) | 0.9113(15)  | 0.8862(15) | 0.3385(15) | 763(35)         | 778(35)         | 769(35)         | -194(35)        | 98(34)          | 15(35)          |

e) Die Koordinaten der H-Atome sind nicht angegeben, da sie aus den C-Positionen berechnet werden Können. b) Der Ausdruck für den Temperaturfaktor lautet:

 $\mathbb{T} = \exp\{-2\pi^2 \left( U_{11}h^2 a^{\star 2} + U_{22}k^2 b^{\star 2} + U_{33}l^2 c^{\star 2} + 2U_{12}hka^{\star}b^{\star} + 2U_{13}hla^{\star}c^{\star} + 2U_{23}klb^{\star}c^{\star} \right) \} \ .$ 

Die Röntgenstrukturanalyse zeigt, daß die Bindung des  $C_8H_{11}$ -Liganden im Kristall entsprechend **1a** und **1b** über das Allylsystem (C(1), C(2) und C(8) in Abb. 1) erfolgt, die Rh-C-Abstände (vgl. Tab. 2) liegen zwischen 211 und 224 pm (Mittelwert 217 pm); die Kohlenstoffatome C(3) und C(7) sind mit Abständen von 295 bzw. 276 pm zu weit vom Zentralmetall entfernt, um für eine Bindung in Frage zu kommen.

Die Bindung des Rh-Atoms an den COD-Liganden erfolgt über die Kohlenstoffatome C(9), C – Rh-Bindungsabstand 238 pm, C(10) (223 pm), C(13) (206 pm) und C(14) (224 pm). Die unterschiedlichen C – Rh-Bindungsabstände kommen offenbar durch sterische Effekte zustande. So ist der relativ große Abstand Rh – C(9) von 238 pm durch die Abstoßung der Gruppen C(2) – H und H – C(9) bedingt, die sich genau gegenüber liegen (Abstand der H-Atome etwa 210 pm); gleichzeitig verringert sich der Abstand Rh – C(13) auf 206 pm. Die gegenseitige sterische Beeinflussung der Liganden spiegelt sich, wenn auch in geringerem Maße, beim C<sub>8</sub>H<sub>11</sub>-Liganden in dem etwas größeren Abstand Rh – C(2) von 224 pm wider. In 1 bildet das Rh-Atom eine Tetrahapto- und eine Trihapto-Bindung zu seinen Liganden aus und erhält von diesen insgesamt sieben Elektronen. Es weist daher eine 16-Elektronen-Konfiguration auf. Dieser Befund stützt die Deutung der *in Lösung* gewonnenen Ergebnisse der NMR-Spektroskopie.

Die Röntgenstrukturanalyse von 1 ist unseres Wissens das erste Beispiel einer Strukturbestimmung eines Cyclooctadienylmetall-Komplexes.

| Bindungsabstände (pm) |       |           |       |             |       | Bindungswinkel (°) |        |                   |        |
|-----------------------|-------|-----------|-------|-------------|-------|--------------------|--------|-------------------|--------|
| Bindung               | Länge | Bindung   | Länge | Bindung     | Länge | Atome              | Winkel | Atome             | Winkel |
| Rh-C(1)               | 216   | C(1)-C(2) | 146   | C(9)-C(10)  | 141   | C(1)-C(2)-C(3)     | 127    | C(9)-C(10)-C(11)  | 128    |
| Rh-C(2)               | 224   | C(2)-C(3) | 140   | C(10)~C(11) | 148   | C(2)-C(3)-C(4)     | 129    | C(10)-C(11)-C(12) | 111    |
| Rh-C(8)               | 211   | C(3)~C(4) | 140   | C(11)-C(12) | 154   | C(3)-C(4)-C(5)     | 122    | C(11)-C(12)-C(13) | 114    |
| RhC (9)               | 238   | C(4)~C(5) | 149   | C(12)-C(13) | 147   | C(4)-C(5)-C(6)     | 112    | C(12)-C(13)-C(14) | 126    |
| Rh-C(10)              | 223   | C(5)-C(6) | 153   | C(13)-C(14) | 143   | C(5)-C(6)-C(7)     | 115    | C(13)-C(14)-C(15) | 122    |
| Rh-C(13)              | 206   | C(6)-C(7) | 146   | C(14)-C(15) | 148   | C(6)-C(7)-C(8)     | 119    | C(14)-C(15)-C(16) | 116    |
| Rh-C(14)              | 224   | C(7)-C(8) | 150   | C(15)-C(16) | 155   | C(7)-C(8)-C(1)     | 121    | C(15)-C(16)-C(9)  | 119    |
|                       |       | C(8)-C(1) | 152   | C(16)-C(9)  | 147   | C(8)-C(1)-C(2)     | 122    | C(16)-C(9)-C(10)  | 125    |
|                       |       |           |       |             |       |                    |        |                   |        |

Tab. 2. Bindungsabstände und -winkel<sup>a)</sup>

 a) Die Standardabweichungen der Bindungslängen betragen etwa 2 pm, die der Winkel etwa 1°.



Abb. 1. ORTEP-Darstellung des Moleküls 1. Die Wasserstoffatome sind der Übersichtlichkeit halber fortgelassen, die Doppelbindung im  $C_8H_{11}$ -Liganden befindet sich zwischen C(3) und C(4)

## Literatur

- <sup>1)</sup> H.-O. Stühler und J. Müller, Chem. Ber. 112, 1359 (1979).
- <sup>2)</sup> J. Müller, H.-O. Stühler und W. Goll, Chem. Ber. 108, 1074 (1975).
- <sup>3)</sup> J. Müller, H.-O. Stühler, G. Huttner und K. Scherzer, Chem. Ber. 109, 1211 (1976).

[366/79]